
1

This lecture is about how memory is organized in a computer system. In
particular, we will consider the role play in improving the processing speed of
a processor.

Lecture 9 Slide 1PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Lecture 9

Memory Hierarchy - Cache Memory

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

2

In our single-cycle instruction model, we assume that memory read
operations are asynchronous, immediate and also single cycle. In reality,
memory devices are synchronous both for read and write, and often take
many cycles to complete. In many embedded processors using
microcontrollers, some memory may not even use parallel data bus. For
example, many microcontrollers such as the ESP32-C3 processor used with
Vbuddy, it uses SPI memory that communicates with the processor in serial
format.
Ideally we want memory to be as fast as the processor, very low cost
(because we use plenty of them in a system) and has large capacity.
However, technological developments over decades have seen processor
speed improving as a much faster than memory (as shown in the graph
above).
Of the three characteristics: high speed, low-cost and large capacity, we can
achieve at best two out of the three. For example, we can have very large
storage at reasonably low cost, but it will be slow. Hard disk is one such
example. We may have fast main memory on a computer with large capacity
(say 32GB), but it will cost a lot.
What do we mean by “fast” in memory? It can mean access time of the
memory from address or control signals to data being valid. In the case of
synchronous memory it also refers to the latency of access, i.e. the number
of clock cycles needed before data is valid.

Lecture 9 Slide 2PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Processor to Memory Interface

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Computer performance depends on:
– Processor performance
– Memory system performance

• Ideal memory
– Fast
– Cheap
– Large

3

Memory does not need to be ”fast” provided that the delay or latency in
access does not affect the performance of the processor. A way to mitigate
the disparity between processor speed and the relatively slow memory
access of very large storage is to introduce memory hierarchy.
Computers are organized such that the CPU has access to very fast storage
very near to the ALU itself. The fastest is the Register File, which is used for
temporary storage. Then we have very fast on-chip memory called cache
memory which supply recently used instruction and/or data. External to the
processor is the main processor memory which is usually dynamic memory
(DRAM). For example, your laptop will have say at least 8GB if not 16GB of
RAM as the main memory external to the processor. Finally, your files are
stored in the disk storage, which nowadays are less likely to be hard disk, but
solid state disk based on silicon flash memory chips. If you back up your
laptop, the back up disk is likely to be hard disk which of course is much
lower. Alternative, instead of the hard disk, you may use cloud storage, which
is even slower with wifi communication.

Lecture 9 Slide 3PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Memory Hierarchy

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

4

All prcoessors now include cache memory to mitigate against the disparity
between processor and memory speed. The reason why cache works is based
on two principles:
1. Temporal Locality – any instruction or data used previously is more likely
to be used again. In the case of instruction memory, programs are often
executing tight loops. That means recently executed instructions are likely to
be executed again.
2. Spatial Locality – any instruction or data accesses are likely to be close to
each other in address space. Instructions are executed in sequence unless
that is a jump or branch. Therefore accessing instructions are likely to be
spatially close. Data accesses are often to arrays or other data structures
that are in consecutive address locations.

Lecture 9 Slide 4PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Big idea: Principle of Locality

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Exploit locality to make memory accesses fast:
• Temporal Locality:
– Locality in time
– If data used recently, likely to use it again soon
– How to exploit: keep recently accessed data in higher

levels of memory hierarchy
• Spatial Locality:
– Locality in space
– If data used recently, likely to use nearby data soon
– How to exploit: when access data, bring nearby data into

higher levels of memory hierarchy too

5

Effectiveness of cache memory is dependent on how often a memory access
is found in the cache memory in a given level of memory hierarchy. A cache
“hit” happens when the data or instruction required is found in the cache and
therefore there is no need to go to the next level to fetch from memory. A
miss happens when the data or instruction is not in cache, and a fetch from
the main memory is required, thus incurring extra latency.
Hit and miss rate is therefore the number of hit or miss divided by the total
number of memory accesses in a program. The average memory access time
is given by the formula above with the following meaning:

tcache – time taken to access cache memory
tMM – time taken to access main memory
tVM – time taken to access virtual memory on disk
MRcache – cache miss rate
MRMM – main memory miss rate

Lecture 9 Slide 5PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Memory Performance

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Hit: data found in that level of memory hierarchy
• Miss: data not found (must go to next level)
 Hit Rate = # hits / # memory accesses
 = 1 – Miss Rate

 Miss Rate = # misses / # memory accesses
 = 1 – Hit Rate

• Average memory access time (AMAT): average time for
processor to access data

 AMAT = tcache + MRcache[tMM + MRMM(tVM)]

6

Here is a simple example to calculate the hit and miss rate of a program.

Lecture 9 Slide 6PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Memory Performance Example 1

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• A program has 2,000 loads and stores
• 1,250 of these data values in cache
• Rest supplied by other levels of memory hierarchy
• What are the cache hit and miss rates?

 Hit Rate = 1250/2000 = 0.625
 Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate

7

Here is another example to calculate the average memory access time
(AMAT). Note that tcache and tMM are specified in latency, i.e. number of clock
cycles.

Lecture 9 Slide 7PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Memory Performance Example 2

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Suppose processor has 2 levels of hierarchy: cache and
main memory

• tcache = 1 cycle, tMM = 100 cycles
• What is the AMAT (average memory access time) of the

program from Example 1?

 AMAT = tcache + MRcache(tMM)
 = [1 + 0.375(100)] cycles
 = 38.5 cycles

8

Cache memory is the most important feature of modern processor design
that ensure high performance. It is usually very fast – taking only 1 clock
cycle to access. It usually holds the most recently accessed data or
instruction, thus exploiting the temporal locality property of programs.

Lecture 9 Slide 8PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Cache Memory

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Highest level in memory hierarchy
• Fast (typically ~ 1 cycle access time)
• Ideally supplies most data to processor
• Usually holds most recently accessed data

9

When considering the design of a cache memory system, we ask the three
most important questions shown above.

The design needs to determine if a memory access is a hit or a miss, i.e. is the
data or instruction stored in the cache. If it is a read cycle and a hit, then a
read from cache must be initiated. If it is a miss, then the hardware must go
and fetch the data from the next level of the memory hierarchy and fill the
cache with it. Finally, if the operation is a write, it must write to the cache
AND to the next level of memory hierarch (i.e. in this case, the main
memory). Since the cache has limited capacity, the design must determine
which cache location is to be overwritten with the new data.

Ideally we want all memory access to be found in cache. This is of course
impossible. However, we can used temporal and spatial locality property of
memory accesses to maximize hit rate. So, newly accessed data are stored in
cache. Furthermore, each time we fetch a new data and store to cache, we
also read and store neighborough data to exploit spatial locality.

Lecture 9 Slide 9PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Cache Design Questions

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• What data is held in the cache?
• How is data found?
• What data is replaced?

• Ideally, cache anticipates needed data and puts it in cache
• But impossible to predict future
• Use past to predict future – temporal and spatial locality:
– Temporal locality: copy newly accessed data into cache
– Spatial locality: copy neighboring data into cache too

10

Here are a number of terms used when characterizing cache memory.
Exactly what they mean and how they affect the cache performance will
become clear later.
Meanings of Capacity, Block size and number of blocks are obvious.

The meaning of sets and degrees of associativity will be explained in the next
few slides.

Lecture 9 Slide 10PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Cache Terminology

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Capacity (C):
– number of data bytes in cache

• Block size (b):
– bytes of data brought into cache at once

• Number of blocks (B = C/b):
– number of blocks in cache: B = C/b

• Degree of associativity (N):
– number of blocks in a set

• Number of sets (S = B/N):
– each memory address maps to exactly one cache set

11

Cache memory is organized into sets. Each set holds one or more blocks of
data. The relationship between the address of the data in main memory and
the location of that data in the cache is called mapping
Each memory address maps to exactly one set in the cache. But a cache
location can be mapped tom many memory addresses. Some of the address
bits are used to determine which cache set contains the data.
Caches are categorized based on the number of blocks in a set, as will be
seen in the next few slides.

Essentially, if the cache has only 1 block per set, it is calle DIRECT MAPPED
cache.
If the cache has 2 block per set, it is called a 2-WAY SET ASSOCIATIVE cache.
Similar, N block per set cache is called N-way set associative cache.
Fully associative cache refers to all cache blocks belong to 1 set meaning that
data can go in any of the blocks in the set. It is not used in practice.

Lecture 9 Slide 11PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

How to find data in cache?

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Cache organized into S sets
• Each memory address maps to exactly one set
• Caches categorized by # of blocks in a set:
– Direct mapped: 1 block per set
– N-way set associative: N blocks per set
– Fully associative: all cache blocks in 1 set

• Examine each organization for a cache with:
– Capacity (C = 8 words)
– Block size (b = 1 word)
– So, number of blocks (B = 8)

12

Here is an example of direct mapped cache. The assumption is that we have
a cache capacity (C) of 8 words (32-bit). Block size is 1, therefore there are 8
sets (S).
Let us assume that the memory space is like RISC-V, 32-bit address and it is
byte addressing. The bottom 2-bits of the address is the byte offset – it
specifies which bytes is addressed.
The next 3 bits of the address specify which cache location belongs to the
set. As shown in the diagram, ALL MEMORY LOCATIONS with AD[4:2] =
3’b001 map to Set 1 cache as shown in BLUE.
Similar, Set 4 has the cache address 3’b100. All memory locations with
AD[4:2] = 3’b100 map to this cache word.

It is called direct mapped cache because the mapping of a memory address
to which cache location is directly derived from the address itself. There is no
other decision to be made.

This of course has a problem – a cache location could be occupied by the
data from MANY possible main memory addresses. How do we know if this
one location in cache contains the actual data we want?

Lecture 9 Slide 12PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Direct Mapped Cache

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

13

To identify exactly which memory content is currently in the cache, each
cache entry has the 32-bit data, and the most-significant 27 bits of the
address stored along side. This part of the address is called a “Tag” – it
identify which memory location the cache is holding the data for.
One problem remains. Before anything is read, the cache is empty.
Therefore we need to know if a cache location has anything meaningful
stored in it or not. Therefore there is an extra bit called the “V” or valid bit.
When the computer first powerup, the cache is empty and all V bits are 0.
When a data is read from main memory and is stored in its direct mapped
cache location, the corresponding V bit is set to 1 indicating that it has valid
data. This valid data may be however be for a different address than the one
that you want to read. So the top 27 bits of the memory address is
compared to the tag stored in the cache location. If V is ‘1’ and the Tag fields
match, then there is hit and the signal “Hit” goes high.
Otherwise, it is a miss. The cache control must then read the relevant data
from main memory, update the Tag and Data field of the cache.
Therefore each entry of the cache must have 32 bits for the data, 27 bits for
the tag and 1 bit for valid flag, or 60 bits all together.

Lecture 9 Slide 13PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Direct Mapped Cache hardware

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

14

Consider what happens when the processor is executing this snippet of
assembly code. Register s0 is used as a loop counter, counting down from 5
to zero. Register s1 is the address register into memory which has associated
with it 8 words of direct mapped cache as shown.
The loop reads word data from addresses 0x4, 0x8 and 0xC (byte addressing),
again and again for 5 times. This program does not do anything useful – it is
just an example of cache memory.

The instruction lw s2, 4(s1) load a word from memory addrss 0x4 to Regsiter
s2. The first time it happens, the cache does not contain the data, therefore
it is a miss. However, each time round the loop for the remaining 4 times,
the data is in the cache and therefore they are all hits. The same is true for
the next two memory read instructions.
So the total number of memory access is 3 x 5 = 15, and there are 3 misses.
Hence the miss rate is 20%.

Lecture 9 Slide 14PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Direct Mapped Cache Miss Rate Example

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1
mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

RISC-V assembly code

 addi s0, zero, 5

 addi s1, zero, 0
LOOP: beq s0, zero, DONE

 lw s2, 4(s1)

 lw s3, 12(s1)

 lw s4, 8(s1)
 addi s0, s0, -1

 j LOOP

DONE:
Miss Rate = 3/15
 = 20%

15

Here is another example. This time there are two memory read operations,
one from 0x4 and a second from 0x24. Here both memory address map to
the same cache location of 3’b001 (Set 1). Therefore each time around the
loop, the WRONG data is stored in the cache location. This is called a conflict
because the same cache is mapped to both memory locations being read in
the loop.
Therefore all memory access in the loop are misses. The miss rate is there
100%.
It is clear that if we only have a block size of 1, as is the case here, the chance
of a conflict miss is high. This is because MANY memory addresses are
mapped to the same cache location.
One way to reduce conflict misses is to have block size more than 1 in a given
set.

Lecture 9 Slide 15PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Direct Mapped Cache Conflict Miss Example

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

RISC-V assembly code

 addi s0, zero, 5

 addi s1, zero, 0
LOOP: beq s0, zero, DONE

 lw s2, 0x4(s1)

 lw s4, 0x24(s1)

 addi s0, s0, -1
 j LOOP

DONE: Miss Rate = 10/10
 = 100%

16

This is the structure of a cache organization where each set has TWO possible
entries, so that instead of having 8 set of 1, we now have 4 sets, each have
two storage locations. This is also called a 2-way set associative cache.
Similar to before, two of the address bits are used to identify which set the
memory address is mapped to. However, each cache set can store TWO data
from two different members of the set. The Tag comparison determines
which if any of the two-way cache contains the actual data.
Now the number of locations mapped to each cache line is doubled. This is
because the Tag is now 28 bits instead of 27 bits. However, each time the
cache mapping identify a given cache location, there are two places that the
data could go. This has the potential of reducing conflict misses.

Lecture 9 Slide 16PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

2-Way Set Associative Cache

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

17

Using the example earlier where we had 100% miss rate due to conflict (i.e.
successful memory access maps to the same cache location).
In this case, there are two locations in cache that can be mapped to the main
memory in Set 1, the cache now stores the data from 0x4 AND 0x24
simultenously. There would be two misses when the cache was first filled.
Thereafter, there is no need to read from main memory again. So the miss
rate goes down from 100% to 20%.

Lecture 9 Slide 17PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

RISC-V assembly code

 addi s0, zero, 5

 addi s1, zero, 0
LOOP: beq s0, zero, DONE

 lw s2, 0x4(s1)

 lw s4, 0x24(s1)

 addi s0, s0, -1
 j LOOP

DONE:

Miss Rate = 2/10
 = 20%

2-Way Set Associative Cache Miss Rate Example

18

So far, the cache organization does not exploit the property of spatial locality
because neighbouring address locations are mapped to different cache
locations since the block size was 1. However, we can increase the block size,
say, to 4 as shown here.
That is everything a cache miss occurs, we fetch not only the missed data, but
its closest neighbours as well in anticipation that they may be accessed next.
The same 8 cache word storage is now dividied into two set, each stores one
block of 4 words as shown in the diagram here.

Lecture 9 Slide 18PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Increase block size:
– Block size, b = 4 words
– C = 8 words
– Direct mapped (1 block per set)
– Number of blocks, B = 2 (C/b = 8/4 = 2)

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Design for Spatial Locality

19

Here is again the example we considered earlier where we read from
addresses 0x4, 0x8 and 0xC. However, all these three locations belong to the
same set and have the same tag value. They are all stored in the same block
such that each time one of these locations is accessed, the rest of the block
will be read into the cache. Assuming that there is enough time that the first
read fills the entire cache block, then there is only 1 miss in 15, and the miss
rate drops to 6.67%.

Lecture 9 Slide 19PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Cache Performance with b = 4

RISC-V assembly code
 addi s0, zero, 5

 addi s1, zero, 0

LOOP: beq s0, zero, DONE

 lw s2, 4(s1)

 lw s3, 12(s1)

 lw s4, 8(s1)

 addi s0, s0, -1

 j LOOP

DONE:

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate = 1/15
 = 6.67%

20

Here is a re-cap fo the different organization of caches: direct mapped, set
associative and fully associative (not used). They have three types of misses:
first time (or compulsory), capacity and conflict. A combination of N-way set
associative and larger block size provide the best compromise to reduce
cache misses for a given capacity.

Lecture 9 Slide 20PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Cache Organisation Recap

• Type of misses:
• Compulsory: first time data accessed
• Capacity: cache too small to hold all data of interest
• Conflict: data of interest maps to same location in cache

• Miss penalty: time it takes to retrieve a block from lower level of
hierarchy

• Capacity: C
• Block size: b
• No. of blocks in cache: B = C/b
• No. of blocks in a set: N
• No. of sets: S = B/N

21

When one uses N-way set associative cache, each cache set can store data
with N different tags. The example here shows a 2-way associative cache.
The code snippet accesses memory at 0x04, 0x24 and 0x54. All these three
locations map to the same Set 1.
When 0x54 is to be read, there will be a miss because the cache contains the
data from 0x04 and 0x24 already and is full. We now must kick out one of
these two so that data from 0x54 can be stored. Which one should be kicked
out and be replaced?
The most common method is called least recently used (LRU) replacement
method. That is, we kick out the one that was least recently used and keep
the one that was most recently used.
In the example here, the U-bit (use bit) indicates which way (i.e. Way 0 or
Way 1) within the set was least recently used.
For set associative cache with more than two ways, tracking the least
recently used way becomes very complicated. To make things simpler, the
ways (say 4-way) are divided into two groups (each has 2 ways). U indicates
which group of the wasy was least recently used.
When a replacement is needed, the new data replaces a random data within
the least recently used group. Such a policy is called pseudo-LRU and is a
frequently used policy in practice.

Lecture 9 Slide 21PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Replacement Policy

• Cache is too small to hold all data of interest at once
• If cache full: program accesses data X and evicts data Y
• Capacity miss when access Y again
• How to choose Y to minimize chance of needing it again?

– Least recently used (LRU) replacement: the least recently used block in a set
evicted

RISC-V assembly
lw s1, 0x04(zero)
lw s2, 0x24(zero)
lw s3, 0x54(zero)

22

Here is a plot of miss rate versus the size of cache for different ways of
associativeness when running SPEC2000 benchmark. It shows the following:
1. Increase cache capacity (i.e. size) reduces miss rate.
2. Going from 1-way associative (i.e. direct mapped) to 2-way associative

cache gives the biggest gain.
3. Increasing beyond 4 or 8 way associative yield diminishing return – so no

point to go beyond 4 or 8 ways.

The plot of miss rate versus block size also produces good insights. The miss
rate is minimum for block size of 64 bytes (x-axis is block size in bytes).
Increasing the block size beyond this actually increases the miss rate.

Lecture 9 Slide 22PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Cache Miss Rate vs Sizes

Hennessy and Patterson, Computer Architecture: A Quantitative Approach,
5th ed., Morgan Kaufmann, 2012

• Bigger blocks reduce compulsory misses
• Bigger blocks increase conflict misses

23

Here is a plot of miss rate versus the size of cache for different ways of
associativeness when running SPEC2000 benchmark. It shows the following:
1. Increase cache capacity (i.e. size) reduces miss rate.
2. Going from 1-way associative (i.e. direct mapped) to 2-way associative

cache gives the biggest gain.
3. Increasing beyond 4 or 8 way associative yield diminishing return – so no

point to go beyond 4 or 8 ways.

The plot of miss rate versus block size also produces good insights. The miss
rate is minimum for block size of 64 bytes (x-axis is block size in bytes).
Increasing the block size beyond this actually increases the miss rate.

Lecture 9 Slide 23PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Write policy for cache memory

• Same as cache read for hit/miss detection
• If cache misses, cache block is fetched from main memory, the word written to

the cache block
• If cache hits, word is simply written to cache block – no need to fetc
• Problem – once a word is written, the cache contains data DIFFERENT from the

main memory. This is known as cache coherency problem.
• There are two ways to handle this:

• Write-through cache – data is written to cache and simultaneously to the
main memory

• Write-back cache – data is written to cache and a dirty bit (D) associated
with the cache block is set. It is written back to main memory ONLY when the
block is evicted from the cache.

24

Modern processors do not only have ONE level of cache. Instead, they have
multiple level of caches. For example if a processor has two level of cache,
L1 and L2, L1 would be smaller in size, hence faster to access. If there is a
miss in L1, then data if fetch from L2 (if there), which is larger, and have
relatively slower access time. If it again is a miss, then main memory is
accessed etc.
Intel core i7 processors use THREE level of caching. This is a multicore
processor with several i7 cores. Each core has its own L1 and L2 cache.
L1 cache is broken up into two halves, one for instruction and a second for
data.
L2 is a combined cache for both instruction and data.
L3 cache is shared among all cores and is an inclusive cache, meaning that its
stored data is present in lower level L1 or L2 cache of the cores.

Lecture 9 Slide 24PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Multilevel Cache

• Larger caches have lower miss rates, longer access times
• Expand memory hierarchy to multiple levels of caches
• Level 1: small and fast (e.g. 16 KB, 1 cycle)
• Level 2: larger and slower (e.g. 256 KB, 2-6 cycles)
• Most modern PCs have L1, L2, and L3 cache

25

Here is the layout of the cache in an Intel i7 processor. Each of the four
cores of this i7 variant has its own L1 and L2 caches.

The L1 cache is 32kB each for instruction and for data. While the instruction
cache is 4-way associative, the data cache is 8-way associative. The latency
of the L1 cache is 4 cycles and it is pipelined. The replacement policy is
pseudo-LRU.

The L2 cache is combined data and instruction, and is 256kB in capacity and it
is 8-way associative. It takes 10 cycles to access.

Finally the large L3 cache is common to all cores, It is 8MB in size, 160way
associative and takes a relatively long 35 cycles to access.

Lecture 9 Slide 25PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Intel i7 Cache Characteristics

26

This slide summarises the content of this lecture on cache memory
organization and design.

Lecture 9 Slide 26PYKC 19 Nov 2024 EIE2 Instruction Architectures & Compilers

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Summary on Cache

• What data is held in the cache?
– Recently used data (temporal locality)
– Nearby data (spatial locality)

• How is data found?
– Set is determined by address of data
– Word within block also determined by address
– In associative caches, data could be in one of several ways

• What data is replaced?
– Least-recently used way in the set

